Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

RNA polymerase III limits longevity downstream of TORC1.

Identifieur interne : 000767 ( Main/Exploration ); précédent : 000766; suivant : 000768

RNA polymerase III limits longevity downstream of TORC1.

Auteurs : Danny Filer [Royaume-Uni] ; Maximillian A. Thompson [Royaume-Uni] ; Vakil Takhaveev [Pays-Bas] ; Adam J. Dobson [Royaume-Uni] ; Ilektra Kotronaki [Royaume-Uni] ; James W M. Green [Royaume-Uni] ; Matthias Heinemann [Pays-Bas] ; Jennifer M A. Tullet [Royaume-Uni] ; Nazif Alic [Royaume-Uni]

Source :

RBID : pubmed:29186112

Descripteurs français

English descriptors

Abstract

Three distinct RNA polymerases transcribe different classes of genes in the eukaryotic nucleus. RNA polymerase (Pol) III is the essential, evolutionarily conserved enzyme that generates short, non-coding RNAs, including tRNAs and 5S rRNA. The historical focus on transcription of protein-coding genes has left the roles of Pol III in organismal physiology relatively unexplored. Target of rapamycin kinase complex 1 (TORC1) regulates Pol III activity, and is also an important determinant of longevity. This raises the possibility that Pol III is involved in ageing. Here we show that Pol III limits lifespan downstream of TORC1. We find that a reduction in Pol III extends chronological lifespan in yeast and organismal lifespan in worms and flies. Inhibiting the activity of Pol III in the gut of adult worms or flies is sufficient to extend lifespan; in flies, longevity can be achieved by Pol III inhibition specifically in intestinal stem cells. The longevity phenotype is associated with amelioration of age-related gut pathology and functional decline, dampened protein synthesis and increased tolerance of proteostatic stress. Pol III acts on lifespan downstream of TORC1, and limiting Pol III activity in the adult gut achieves the full longevity benefit of systemic TORC1 inhibition. Hence, Pol III is a pivotal mediator of this key nutrient-signalling network for longevity; the growth-promoting anabolic activity of Pol III mediates the acceleration of ageing by TORC1. The evolutionary conservation of Pol III affirms its potential as a therapeutic target.

DOI: 10.1038/nature25007
PubMed: 29186112
PubMed Central: PMC5732570


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">RNA polymerase III limits longevity downstream of TORC1.</title>
<author>
<name sortKey="Filer, Danny" sort="Filer, Danny" uniqKey="Filer D" first="Danny" last="Filer">Danny Filer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT</wicri:regionArea>
<orgName type="university">University College de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thompson, Maximillian A" sort="Thompson, Maximillian A" uniqKey="Thompson M" first="Maximillian A" last="Thompson">Maximillian A. Thompson</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biosciences, University of Kent, Canterbury CT2 7NJ</wicri:regionArea>
<wicri:noRegion>Canterbury CT2 7NJ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Takhaveev, Vakil" sort="Takhaveev, Vakil" uniqKey="Takhaveev V" first="Vakil" last="Takhaveev">Vakil Takhaveev</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen</wicri:regionArea>
<orgName type="university">Université de Groningue</orgName>
<placeName>
<settlement type="city">Groningue (ville)</settlement>
<region>Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dobson, Adam J" sort="Dobson, Adam J" uniqKey="Dobson A" first="Adam J" last="Dobson">Adam J. Dobson</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT</wicri:regionArea>
<orgName type="university">University College de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kotronaki, Ilektra" sort="Kotronaki, Ilektra" uniqKey="Kotronaki I" first="Ilektra" last="Kotronaki">Ilektra Kotronaki</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT</wicri:regionArea>
<orgName type="university">University College de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Green, James W M" sort="Green, James W M" uniqKey="Green J" first="James W M" last="Green">James W M. Green</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biosciences, University of Kent, Canterbury CT2 7NJ</wicri:regionArea>
<wicri:noRegion>Canterbury CT2 7NJ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Heinemann, Matthias" sort="Heinemann, Matthias" uniqKey="Heinemann M" first="Matthias" last="Heinemann">Matthias Heinemann</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen</wicri:regionArea>
<orgName type="university">Université de Groningue</orgName>
<placeName>
<settlement type="city">Groningue (ville)</settlement>
<region>Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tullet, Jennifer M A" sort="Tullet, Jennifer M A" uniqKey="Tullet J" first="Jennifer M A" last="Tullet">Jennifer M A. Tullet</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biosciences, University of Kent, Canterbury CT2 7NJ</wicri:regionArea>
<wicri:noRegion>Canterbury CT2 7NJ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Alic, Nazif" sort="Alic, Nazif" uniqKey="Alic N" first="Nazif" last="Alic">Nazif Alic</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT</wicri:regionArea>
<orgName type="university">University College de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29186112</idno>
<idno type="pmid">29186112</idno>
<idno type="doi">10.1038/nature25007</idno>
<idno type="pmc">PMC5732570</idno>
<idno type="wicri:Area/Main/Corpus">000663</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000663</idno>
<idno type="wicri:Area/Main/Curation">000663</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000663</idno>
<idno type="wicri:Area/Main/Exploration">000663</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">RNA polymerase III limits longevity downstream of TORC1.</title>
<author>
<name sortKey="Filer, Danny" sort="Filer, Danny" uniqKey="Filer D" first="Danny" last="Filer">Danny Filer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT</wicri:regionArea>
<orgName type="university">University College de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thompson, Maximillian A" sort="Thompson, Maximillian A" uniqKey="Thompson M" first="Maximillian A" last="Thompson">Maximillian A. Thompson</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biosciences, University of Kent, Canterbury CT2 7NJ</wicri:regionArea>
<wicri:noRegion>Canterbury CT2 7NJ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Takhaveev, Vakil" sort="Takhaveev, Vakil" uniqKey="Takhaveev V" first="Vakil" last="Takhaveev">Vakil Takhaveev</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen</wicri:regionArea>
<orgName type="university">Université de Groningue</orgName>
<placeName>
<settlement type="city">Groningue (ville)</settlement>
<region>Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dobson, Adam J" sort="Dobson, Adam J" uniqKey="Dobson A" first="Adam J" last="Dobson">Adam J. Dobson</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT</wicri:regionArea>
<orgName type="university">University College de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kotronaki, Ilektra" sort="Kotronaki, Ilektra" uniqKey="Kotronaki I" first="Ilektra" last="Kotronaki">Ilektra Kotronaki</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT</wicri:regionArea>
<orgName type="university">University College de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Green, James W M" sort="Green, James W M" uniqKey="Green J" first="James W M" last="Green">James W M. Green</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biosciences, University of Kent, Canterbury CT2 7NJ</wicri:regionArea>
<wicri:noRegion>Canterbury CT2 7NJ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Heinemann, Matthias" sort="Heinemann, Matthias" uniqKey="Heinemann M" first="Matthias" last="Heinemann">Matthias Heinemann</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen</wicri:regionArea>
<orgName type="university">Université de Groningue</orgName>
<placeName>
<settlement type="city">Groningue (ville)</settlement>
<region>Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tullet, Jennifer M A" sort="Tullet, Jennifer M A" uniqKey="Tullet J" first="Jennifer M A" last="Tullet">Jennifer M A. Tullet</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biosciences, University of Kent, Canterbury CT2 7NJ</wicri:regionArea>
<wicri:noRegion>Canterbury CT2 7NJ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Alic, Nazif" sort="Alic, Nazif" uniqKey="Alic N" first="Nazif" last="Alic">Nazif Alic</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT</wicri:regionArea>
<orgName type="university">University College de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature</title>
<idno type="eISSN">1476-4687</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aging (drug effects)</term>
<term>Aging (physiology)</term>
<term>Animals (MeSH)</term>
<term>Caenorhabditis elegans (drug effects)</term>
<term>Caenorhabditis elegans (enzymology)</term>
<term>Caenorhabditis elegans (physiology)</term>
<term>Drosophila melanogaster (drug effects)</term>
<term>Drosophila melanogaster (enzymology)</term>
<term>Drosophila melanogaster (physiology)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Female (MeSH)</term>
<term>Food (MeSH)</term>
<term>Intestines (cytology)</term>
<term>Intestines (enzymology)</term>
<term>Longevity (drug effects)</term>
<term>Longevity (physiology)</term>
<term>Male (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (antagonists & inhibitors)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (metabolism)</term>
<term>Protein Biosynthesis (MeSH)</term>
<term>RNA Polymerase III (antagonists & inhibitors)</term>
<term>RNA Polymerase III (deficiency)</term>
<term>RNA Polymerase III (metabolism)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Stem Cells (cytology)</term>
<term>Stem Cells (enzymology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aliments (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Biosynthèse des protéines (MeSH)</term>
<term>Caenorhabditis elegans (effets des médicaments et des substances chimiques)</term>
<term>Caenorhabditis elegans (enzymologie)</term>
<term>Caenorhabditis elegans (physiologie)</term>
<term>Cellules souches (cytologie)</term>
<term>Cellules souches (enzymologie)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (antagonistes et inhibiteurs)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Drosophila melanogaster (effets des médicaments et des substances chimiques)</term>
<term>Drosophila melanogaster (enzymologie)</term>
<term>Drosophila melanogaster (physiologie)</term>
<term>Femelle (MeSH)</term>
<term>Intestins (cytologie)</term>
<term>Intestins (enzymologie)</term>
<term>Longévité (effets des médicaments et des substances chimiques)</term>
<term>Longévité (physiologie)</term>
<term>Mâle (MeSH)</term>
<term>RNA polymerase III (antagonistes et inhibiteurs)</term>
<term>RNA polymerase III (déficit)</term>
<term>RNA polymerase III (métabolisme)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
<term>Vieillissement (effets des médicaments et des substances chimiques)</term>
<term>Vieillissement (physiologie)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>RNA Polymerase III</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>RNA polymerase III</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Cellules souches</term>
<term>Intestins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Intestines</term>
<term>Stem Cells</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>RNA Polymerase III</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Aging</term>
<term>Caenorhabditis elegans</term>
<term>Drosophila melanogaster</term>
<term>Longevity</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>RNA polymerase III</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Caenorhabditis elegans</term>
<term>Drosophila melanogaster</term>
<term>Longévité</term>
<term>Saccharomyces cerevisiae</term>
<term>Vieillissement</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Caenorhabditis elegans</term>
<term>Cellules souches</term>
<term>Drosophila melanogaster</term>
<term>Intestins</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Caenorhabditis elegans</term>
<term>Drosophila melanogaster</term>
<term>Intestines</term>
<term>Saccharomyces cerevisiae</term>
<term>Stem Cells</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>RNA Polymerase III</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>RNA polymerase III</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Caenorhabditis elegans</term>
<term>Drosophila melanogaster</term>
<term>Longévité</term>
<term>Saccharomyces cerevisiae</term>
<term>Vieillissement</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Aging</term>
<term>Caenorhabditis elegans</term>
<term>Drosophila melanogaster</term>
<term>Longevity</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Evolution, Molecular</term>
<term>Female</term>
<term>Food</term>
<term>Male</term>
<term>Protein Biosynthesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Aliments</term>
<term>Animaux</term>
<term>Biosynthèse des protéines</term>
<term>Femelle</term>
<term>Mâle</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Three distinct RNA polymerases transcribe different classes of genes in the eukaryotic nucleus. RNA polymerase (Pol) III is the essential, evolutionarily conserved enzyme that generates short, non-coding RNAs, including tRNAs and 5S rRNA. The historical focus on transcription of protein-coding genes has left the roles of Pol III in organismal physiology relatively unexplored. Target of rapamycin kinase complex 1 (TORC1) regulates Pol III activity, and is also an important determinant of longevity. This raises the possibility that Pol III is involved in ageing. Here we show that Pol III limits lifespan downstream of TORC1. We find that a reduction in Pol III extends chronological lifespan in yeast and organismal lifespan in worms and flies. Inhibiting the activity of Pol III in the gut of adult worms or flies is sufficient to extend lifespan; in flies, longevity can be achieved by Pol III inhibition specifically in intestinal stem cells. The longevity phenotype is associated with amelioration of age-related gut pathology and functional decline, dampened protein synthesis and increased tolerance of proteostatic stress. Pol III acts on lifespan downstream of TORC1, and limiting Pol III activity in the adult gut achieves the full longevity benefit of systemic TORC1 inhibition. Hence, Pol III is a pivotal mediator of this key nutrient-signalling network for longevity; the growth-promoting anabolic activity of Pol III mediates the acceleration of ageing by TORC1. The evolutionary conservation of Pol III affirms its potential as a therapeutic target.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29186112</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>05</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1476-4687</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>552</Volume>
<Issue>7684</Issue>
<PubDate>
<Year>2017</Year>
<Month>12</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>Nature</Title>
<ISOAbbreviation>Nature</ISOAbbreviation>
</Journal>
<ArticleTitle>RNA polymerase III limits longevity downstream of TORC1.</ArticleTitle>
<Pagination>
<MedlinePgn>263-267</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/nature25007</ELocationID>
<Abstract>
<AbstractText>Three distinct RNA polymerases transcribe different classes of genes in the eukaryotic nucleus. RNA polymerase (Pol) III is the essential, evolutionarily conserved enzyme that generates short, non-coding RNAs, including tRNAs and 5S rRNA. The historical focus on transcription of protein-coding genes has left the roles of Pol III in organismal physiology relatively unexplored. Target of rapamycin kinase complex 1 (TORC1) regulates Pol III activity, and is also an important determinant of longevity. This raises the possibility that Pol III is involved in ageing. Here we show that Pol III limits lifespan downstream of TORC1. We find that a reduction in Pol III extends chronological lifespan in yeast and organismal lifespan in worms and flies. Inhibiting the activity of Pol III in the gut of adult worms or flies is sufficient to extend lifespan; in flies, longevity can be achieved by Pol III inhibition specifically in intestinal stem cells. The longevity phenotype is associated with amelioration of age-related gut pathology and functional decline, dampened protein synthesis and increased tolerance of proteostatic stress. Pol III acts on lifespan downstream of TORC1, and limiting Pol III activity in the adult gut achieves the full longevity benefit of systemic TORC1 inhibition. Hence, Pol III is a pivotal mediator of this key nutrient-signalling network for longevity; the growth-promoting anabolic activity of Pol III mediates the acceleration of ageing by TORC1. The evolutionary conservation of Pol III affirms its potential as a therapeutic target.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Filer</LastName>
<ForeName>Danny</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thompson</LastName>
<ForeName>Maximillian A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Takhaveev</LastName>
<ForeName>Vakil</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dobson</LastName>
<ForeName>Adam J</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kotronaki</LastName>
<ForeName>Ilektra</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Green</LastName>
<ForeName>James W M</ForeName>
<Initials>JWM</Initials>
<AffiliationInfo>
<Affiliation>School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Heinemann</LastName>
<ForeName>Matthias</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tullet</LastName>
<ForeName>Jennifer M A</ForeName>
<Initials>JMA</Initials>
<AffiliationInfo>
<Affiliation>School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alic</LastName>
<ForeName>Nazif</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MR/L018802/1</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>P40 OD010440</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>11</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nature</MedlineTA>
<NlmUniqueID>0410462</NlmUniqueID>
<ISSNLinking>0028-0836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.6</RegistryNumber>
<NameOfSubstance UI="D012320">RNA Polymerase III</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Nat Rev Mol Cell Biol. 2018 Feb;19(2):74-75</RefSource>
<PMID Version="1">29235575</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="CommentIn">
<RefSource>Nature. 2017 Dec 14;552(7684):182-183</RefSource>
<PMID Version="1">29239369</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000375" MajorTopicYN="N">Aging</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017173" MajorTopicYN="N">Caenorhabditis elegans</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004331" MajorTopicYN="N">Drosophila melanogaster</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005502" MajorTopicYN="N">Food</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007422" MajorTopicYN="N">Intestines</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008136" MajorTopicYN="N">Longevity</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="N">Protein Biosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012320" MajorTopicYN="N">RNA Polymerase III</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013234" MajorTopicYN="N">Stem Cells</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>10</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>11</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29186112</ArticleId>
<ArticleId IdType="pii">nature25007</ArticleId>
<ArticleId IdType="doi">10.1038/nature25007</ArticleId>
<ArticleId IdType="pmc">PMC5732570</ArticleId>
<ArticleId IdType="mid">EMS74851</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1969 Oct 18;224(5216):234-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5344598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Mar-Apr;1829(3-4):361-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23165150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2013;47:377-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24016187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Intern Med. 2008 Feb;263(2):179-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18226095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jan 8;327(5962):210-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20056890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21528-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23236133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2016 Jun;41(6):546-559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27068803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2009 Aug;94(2):83-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19446021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2016 May 17;35(10 ):1058-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26988032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 24;109 (4):1139-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22228302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2013 Jun;8(6):1019-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23640166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 May 5;11(5):438-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 2005 Oct;126(4):379-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16186564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Nov 14;115(4):489-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14622602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Oct 14;6(10):e1001159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20976250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Dec 11;426(6967):620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Aug 23;5:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27549339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Sep 12;26(17):2291-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27524482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Aug 1;20(15):2030-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16882981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Sep 18;10(9):e1004619</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25232726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2011 Feb;10(1):137-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21108726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2015 Nov 3;6(34):35274-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26431326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1992 Jul;8(7):501-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1523884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Jan 15;20(2):174-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16418483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Oct 28;147(3):603-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22036568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jul 5;7(1):4704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28680098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jul 16;460(7253):392-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Jan 10;260(1):449-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3843841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Mol Biol. 2008 Jan 22;9:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18211699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014 Mar;10 (3):453-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24419107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jul 16;305(5682):361</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15192154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Jan;11(1):35-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D93-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18984615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2017 Apr;14 (4):417-419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28263959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Feb 24;45(4):439-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22365827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 Apr;6(4):275-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19305406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 Dec;6(12 ):917-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19915560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2016 Jul 14;12 (7):e1006135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27414651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 May;5(5):897-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10882126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4916-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22421136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jul;1849(7):898-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25497380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2011 Jun 21;7:502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21694719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Feb 16;5:e10956</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26878754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol A Biol Sci Med Sci. 2007 Oct;62(10):1071-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17921418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2016 Jun 14;23 (6):990-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27304501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2008 Oct;7(5):758-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18691185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Londres</li>
<li>Groningue (province)</li>
</region>
<settlement>
<li>Groningue (ville)</li>
<li>Londres</li>
</settlement>
<orgName>
<li>University College de Londres</li>
<li>Université de Groningue</li>
</orgName>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Filer, Danny" sort="Filer, Danny" uniqKey="Filer D" first="Danny" last="Filer">Danny Filer</name>
</region>
<name sortKey="Alic, Nazif" sort="Alic, Nazif" uniqKey="Alic N" first="Nazif" last="Alic">Nazif Alic</name>
<name sortKey="Dobson, Adam J" sort="Dobson, Adam J" uniqKey="Dobson A" first="Adam J" last="Dobson">Adam J. Dobson</name>
<name sortKey="Green, James W M" sort="Green, James W M" uniqKey="Green J" first="James W M" last="Green">James W M. Green</name>
<name sortKey="Kotronaki, Ilektra" sort="Kotronaki, Ilektra" uniqKey="Kotronaki I" first="Ilektra" last="Kotronaki">Ilektra Kotronaki</name>
<name sortKey="Thompson, Maximillian A" sort="Thompson, Maximillian A" uniqKey="Thompson M" first="Maximillian A" last="Thompson">Maximillian A. Thompson</name>
<name sortKey="Tullet, Jennifer M A" sort="Tullet, Jennifer M A" uniqKey="Tullet J" first="Jennifer M A" last="Tullet">Jennifer M A. Tullet</name>
</country>
<country name="Pays-Bas">
<region name="Groningue (province)">
<name sortKey="Takhaveev, Vakil" sort="Takhaveev, Vakil" uniqKey="Takhaveev V" first="Vakil" last="Takhaveev">Vakil Takhaveev</name>
</region>
<name sortKey="Heinemann, Matthias" sort="Heinemann, Matthias" uniqKey="Heinemann M" first="Matthias" last="Heinemann">Matthias Heinemann</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000767 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000767 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29186112
   |texte=   RNA polymerase III limits longevity downstream of TORC1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29186112" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020